Hypoxia inducible factor-1 improves the actions of nitric oxide and natriuretic peptides after simulated ischemia-reperfusion.
نویسندگان
چکیده
Ischemia-reperfusion reduces the negative functional effects of cyclic GMP in cardiac myocytes. In this study, we tested the hypothesis that upregulation of hypoxic inducible factor-1 (HIF-1) would improve the actions of cyclic GMP signaling following simulated ischemia-reperfusion. HIF-1 alpha was increased with deferoxamine (150 mg/kg for 2 days). Rabbit cardiac myocytes were subjected to simulated ischemia [15 min 95% N(2)-5% CO(2)] and reperfusion [reoxygenation] to produce myocyte stunning. Cell function was measured utilizing a video-edge detector. Shortening was examined at baseline and after brain natriuretic peptide (BNP, 10(-8), 10(-7)M) or S-nitroso-N-acetyl-penicillamine (SNAP, 10(-6), 10(-5)M) followed by KT5823 (cyclic GMP protein kinase inhibitor, 10(-6)M). Kinase activity was measured via a protein phosphorylation assay. Under control conditions, BNP (-30%) and SNAP (-41%) reduced percent shortening, while KT5823 partially restored function (+18%). Deferoxamine treated control myocytes responded similarly. In stunned myocytes, BNP (-21%) and SNAP (-25%) reduced shortening less and KT5823 did not increase function (+2%). Deferoxamine increased the effects of BNP (-38%) and SNAP (-41%) in stunning and restored the effects of KT5823 (+12%). The cyclic GMP protein kinase increased phosphorylation of several proteins in control HIF-1 +/- cells. Phosphorylation was reduced in stunned cells and was restored in deferoxamine treated stunned cells. This study demonstrated that simulated ischemia-reperfusion reduced the negative functional effects of increasing cyclic GMP and this was related to reduced effects of the cyclic GMP protein kinase. Increased HIF-1 alpha protects the functional effects of cyclic GMP thorough maintenance of cyclic GMP protein kinase activity after ischemic-reperfusion.
منابع مشابه
The Effect of Dexamethasone on Expression of Inducible Nitric Oxide Synthase Gene During Liver Warm Ischemia-reperfusion in Rat
Background: Liver ischemia / reperfusion Injury (IRI) is one of the major causes of liver failure during various types of liver surgery, trauma and infections. The present study investigates the effect of dexsamethasone on the liver injury and inducible nitric oxide synthase gene expression during hepatic warm ischemia/reperfusion in rats. Materials and Methods: 24 male Wistar rats (200-250 g)...
متن کاملExpression of constitutively stable hybrid hypoxia-inducible factor-1alpha protects cultured rat cardiomyocytes against simulated ischemia-reperfusion injury.
Preconditioning in cultured cardiomyocytes elevates the expression of several protective genes including Glut-4 and heat shock protein (HSP)70. Hypoxia-inducible factor-1 (HIF-1) is known to mediate the transcriptional activation of hypoxia-responsive genes. In this study, we examined the effect of adenovirus-mediated expression of constitutively stable hybrid forms of HIF-1alpha on cardiomyocy...
متن کاملThe anti-inflammatory and anti-apoptotic effects of gallic acid against mucosal inflammation- and erosions-induced by gastric ischemia-reperfusion in rats
The present study aimed to evaluate the protective effect of gallic acid on gastric mucosal lesions caused by ischemia-reperfusion (I/R) injury in rat. Forty male rats were randomly divided into sham, control (I/R injury) and three gallic acid-pretreated groups. To induce I/R lesions, the celiac artery was clamped for 30 min and then the clamp was removed to allow reperfusion for 6 hr. Pretreat...
متن کاملInhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats
Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...
متن کاملContribution of Nitric Oxide Synthase (NOS) Activity in Blood-Brain Barrier Disruption and Edema after Acute Ischemia/ Reperfusion in Aortic Coarctation-Induced Hypertensive Rats
Background: Nitric oxide synthase (NOS) activity is increased during hypertension and cerebral ischemia. NOS inactivation reduces stroke-induced cerebral injuries, but little is known about its role in blood-brain barrier (BBB) disruption and cerebral edema formation during stroke in acute hypertension. Here, we investigated the role of NOS inhibition in progression of edema formation and BBB d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 21 5-6 شماره
صفحات -
تاریخ انتشار 2008